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Measures of Fit in Structural Equation Modeling:  

An Introduction 
 

James H. Steiger 

 

Besides the chi square value and its probability level, modern structural equation 

modeling programs print a number of indices of fit, which can be used to interpret how 

well a model fits the data. The indices discussed here are all single model indices, i.e., 

values which can be computed from a single model tested on one data set.  

General Theoretical Orientation 

When attempting to assess how well a model fits a particular data set, one must realize 

at the outset that the classic hypothesis-testing approach is inappropriate. Consider 

common factor analysis. When maximum likelihood estimation became a practical 

reality, the chi square “goodness-of-fit” statistic was originally employed in a sequential 

testing strategy. According to this strategy, one first picked a small number of factors, 

and tested the null hypothesis that this factor model fit the population S  perfectly. If 

this hypothesis was rejected, the model was assumed to be too simple (i.e., to have too 

few common factors) to fit the data. The number of common factors was increased by 

one, and the preceding procedure repeated. The sequence continued until the hypothesis 

test failed to reject the hypothesis of perfect fit. Steiger and Lind (1980) pointed out 

that this logic was essentially flawed, because, for any population S  (other than one 

constructed as a numerical example directly from the common factor model) the a priori 

probability is essentially 1 that the common factor model will not fit perfectly so long as 

degrees of freedom for the chi square statistic were positive. 

In essence, then, population fit for a covariance structure model with positive degrees of 

freedom is almost never really perfect. Testing whether it is perfect makes little sense. It 

is what statisticians sometimes call an “accept-support” hypothesis test, because 

accepting the null hypothesis supports what is generally the experimenter’s point of 

view, i.e., that the model does fit. 
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Accept-support hypothesis tests are subject to a host of problems. In particular, of 

course, the traditional priorities between Type I and Type II error are reversed. If the 

proponent of a model simply performs the chi square test with low enough power, the 

model can be supported. As a natural consequence of this, hypothesis testing approaches 

to the assessment of model fit should make some attempt at power evaluation. Steiger 

and Lind (1980) demonstrated that performance of statistical tests in common factor 

analysis could be predicted from a noncentral chi square approximation. A number of 

papers dealing with the theory and practice of power evaluation in covariance structure 

analysis have been published (Matsueda & Bielby, 1986; Satorra and Saris, 1985; 

Steiger, Shapiro, & Browne, 1985). Unfortunately, power estimation in the analysis of a 

multivariate model is a difficult, somewhat arbitrary procedure, and such power 

estimates have not, in general, been reported in published studies. 

The main reason for evaluating power is to gain some understanding of precision of 

estimation in a particular situation, to guard against the possibility that a model is 

“accepted” simply because of insufficient power. An alternative (and actually more 

direct) approach to the evaluation of precision is to construct a confidence interval on 

the population noncentrality parameter (or some particularly useful function of it). This 

approach, first suggested in the context of covariance structure analysis by Steiger and 

Lind (1980) offers two worthwhile pieces of information at the same time. It allows one, 

for a particular model and data set to express (1) how bad fit is in the population, and 

(2) how precisely the population badness-of-fit has been determined from the sample 

data. 

Noncentrality­Based Parameter Estimates and Confidence 
Intervals 

Let S be the sample covariance matrix based on N observations, and for notational 

convenience, define 1n N= - . )(M q  is the attempt to reproduce S with a particular 

model and a particular parameter vector q . ( )
ML

M q  is the corresponding matrix 

constructed from the vector of maximum likelihood estimates 
ML

q  obtained by 

minimizing the maximum likelihood discrepancy function,  

 1( , ( )) ln ( ) ln Tr( ( ) )
ML

F p-= - + -S M M S Mq q q  (1) 



-3- 

 

Suppose one has obtained maximum likelihood estimates. Then under conditions (i.e., 

the “population drift” conditions in Steiger, Shapiro, and Browne, 1985) designed to 

simulate the situation where the model fits well but not perfectly, 
ML

nF  has an 

asymptotic noncentral chi square distribution with ( 1) / 2p p t+ - degrees of freedom, 

where t is the number of free parameters in the model, and p is the order of S. The 

noncentrality parameter of the noncentral chi square distribution is *nF , where *F  is 

the value of the discrepancy function in Equation 1 obtained if S is replaced by the 

population covariance matrix S , and maximum likelihood estimation is performed on 

S  instead of S. Hence, the noncentrality parameter is in effect the “population badness-

of-fit statistic.” 

Interestingly, if one divides the noncentrality parameter by n, one obtains a measure of 

population badness-of-fit which depends only on the model, S , and the method of 

estimation. 

If one has a single observation from a noncentral chi square distribution, it is very easy 

to obtain an unbiased estimate of the noncentrality parameter of that distribution. By 

well known theory, if noncentral chi square variate X has noncentrality parameter l  

and degrees of freedom n , the expected value of X is given by 

 ( )E X n l= +  (2) 

whence it immediately follows that an unbiased estimate of l is simply X n- . 

Consequently a large sample “biased corrected” estimate of *F  is ( ) /X n l- . Since 

*F  can never be negative, the simple unbiased estimator is generally modified in 

practice by converting negative values to zero. The estimate  

 max ) , 0{ / }F X nn+ = -  (3) 

is the result. 

It is also possible, by a variety of methods, to obtain a maximum likelihood estimate of 

the noncentrality parameter l  from a single observation from a non-central chi square 

distribution with n  degrees of freedom, and a confidence interval for l  as well. (See, 

e.g., Saxena and Alam, 1982; Spruill, 1986.) 

Before continuing, recall some very basic statistical principles.  
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 Under very general conditions, if q̂ is a maximum likelihood estimator for a 

parameter q , then for any monotonic strictly increasing function f ( ), )(ˆf q  is a 

maximum likelihood estimator of )(f q .  

 Moreover, if 
low

x  and 
high

x  are valid limits of a 100(1 )%a-  confidence interval 

for q , ( )
low

f x and ( )
high

f x  are valid limits of a 100(1 )%a-  confidence interval for 

)(f q .  

These principles immediately imply that, since one can obtain a maximum likelihood 

estimate and confidence interval for *nF , one can obtain a confidence interval and 

maximum likelihood estimate for *F  by dividing by n. 

Structural equation modeling programs obtain a point estimate and confidence interval 

for *nF  by iterative methods. The 100(1 )%a-  confidence limits for the noncentrality 

parameter l  of a 2

,n lc  distribution are obtained by finding (via quasi-Newton iteration) 

the values of l  which place the observed value of the chi square statistic at the 

100( / 2)a  and 100(1 / 2)a-  percentile points of a 2

,n lc  distribution.  

Steiger­Lind RMSEA Index 

The Population Noncentrality Index *F  (PNI) offers some significant virtues as a 

measure of badness-of-fit (see, e.g., Steiger & Lind, 1980; McDonald, 1989). First, it is a 

weighted sum of discrepancies. Second, unlike the Akaike information criterion, for 

example, it is relatively unaffected by sample size.  

However, there are two obvious problems with using the population noncentrality index 

as an index of population badness-of-fit.  

The PNI is not in the metric of the original standardized parameters.  

The PNI fails to compensate for model complexity. In general, for a given S , the more 

complex the model the better it fits. A method for assessing population fit which fails to 

compensate for this will inevitably lead to choosing the most complex models, even 

when much simpler models fit the data nearly as well. The PNI fails to compensate for 

the size or complexity of a model. Hence it has limited utility as a device for comparing 

models. 
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The RMSEA index, first proposed by Steiger and Lind (1980), takes a relatively 

simplistic (but not altogether unreasonable) approach to solving these problems. Since 

model complexity is reflected directly in the number of free parameters, and inversely in 

the number of degrees of freedom, the PNI is divided by degrees of freedom, then the 

square root is taken to return the index to the same metric as the original standardized 

parameters. 

Hence  

 
*

* F
R

n
=  4 

The RMSEA index *R  can be thought of roughly as a root mean square standardized 

residual. Values above .10 indicate an inadequate fit, values below .05 a very good fit. 

Point estimates below .01 indicate an outstanding fit, and are seldom obtained. 

In practice, point and interval estimates of the population RMSEA index are calculated 

as follows. First, we obtain point and interval estimates of the PNI. (Negative point 

estimates are replaced by zero.) Since all these are non-negative, and *R  is a monotonic 

transform of the PNI, point estimates and a confidence interval for *R  are obtained by 

inserting the corresponding values for *F  in Equation 4. It may be shown easily that a 

bound on the point estimate of *R implies a corresponding bound on the ratio of the chi 

square statistic to its degrees of freedom. Specifically, suppose, for example, you have 

decided that, for your purposes, the point estimate of the RMS index should be less 

than some value c. Manipulating the interval, we start with 

 *R c<  

Letting 2 nFc = , the expression becomes 

 

2

n c

c n

n

-

<  

This in turn implies that  

 
2

21 nc
c
n

< +  (5) 
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So, for example, the rule of thumb that, for “close fit,” RMS should be less than .05 

translates into a rule that  

  

 
2

1
400

nc
n

< +  (6) 

With this criterion, if n = 400, the ratio of the chi square to its degrees of freedom 

should be less than 2. Note that this rule implies a less stringent criterion for the ratio 
2 /c n  as sample size increases.  

Rules of thumb that cite a single value for a critical ratio of 2 /c n  ignore the point 

that the chi square statistic has an expected value that is a function of degrees of 

freedom, population badness of fit, and N. Hence, for a fixed level of population badness 

of fit, the expected value of the chi square statistic will increase as sample size increases. 

The rule of Equation 5 compensates for this, and hence it may be useful as a quick and 

easy criterion for assessing fit.  

To avoid misinterpretation, I should emphasize at this point that my primary emphasis 

is on a confidence interval based approach, rather than one based on point estimates. 

The confidence interval approach incorporates information about precision of estimate 

into the assessment of population badness of fit. Simple rules of thumb (such as that of 

Equation 5) based on point estimates ignore these finer statistical considerations. 

Population Gamma Index 

Tanaka and Huba (1985, 1989) have provided a general framework for conceptualizing 

certain fit indices in covariance structure analysis. In their first paper, Tanaka and 

Huba (1985, their Equation 19) gave a general form for the sample fit index for 

covariance structure models under arbitrary generalized least squares estimation.  

In the Tanaka-Huba treatment, it is assumed that a covariance structure model has 

been fit by minimizing an arbitrary generalized least squares (GLS) discrepancy function 

of the form  

 { }
2

1
2

( , ( ) | ) Tr ( )F é ù= -ê úë ûS M V S M Vq q  (7) 

or, equivalently (see Browne, 1974) 
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 ( ) ( )ˆ ˆ ˆ| )( ,F = - ¢ -W ss W ss s s  (8) 

where vecs( )=s S , and ˆ vecs( ( ))= Ms q . V in Equation 7 and W in Equation 8 are 

arbitrary matrices. Appropriate choice of V or W can yield GLS or IRGLS estimators. 

For example, minimization of Equation 7 with 1-=V S  if S has a Wishart distribution 

yields the well-known GLS estimators (Browne, 1974). Setting 
1

( )
-é ù= ê úë ûV M q  yields 

“Iteratively Reweighted Generalized Least Squares (IRGLS) estimators. Bentler (1989, 

page 216), citing Lee & Jennrich, 1979, states that (IRGLS) estimators are equivalent to 

ML estimators. Setting 
1ˆ( )

ML

-é ù= ê úë ûV M q yields a discrepancy function which, according to 

Browne (1974), is usually minimized by the same which minimizes the maximum 

likelihood discrepancy function.  

The Tanaka-Huba fit index can be written as  

 1 /g é ù= - ¢ ¢ê úë ûe We s Ws  (9) 

where ˆ= -e s s  is the vectorized model residuals. Tanaka and Huba (1989) 

demonstrate a deceptively simple, but important result which holds for models which 

are invariant under a constant scaling function (ICSF). A covariance structure model is 

ICSF if multiplication of any covariance matrix which fits the model by a positive scalar 

yields another covariance matrix which also satisfies the model exactly (though possibly 

with different free parameter values). 

If a model which is ICSF has been estimated by minimizing a discrepancy function of 

the form given in Equations 7 and 8 then  

 ˆ¢ =e W 0s  (10) 

e and s are orthogonal “in the metric of W,” and, consequently,  

 ˆ ˆ¢ = ¢ + ¢Ws W es e Ws s  (11) 

If Equation 11 holds, then g may be written 

 ˆ ˆ 1 /g = ¢ ¢ = - ¢ ¢W s Ws e We s Wss s /  (12) 

In this form, g  defines a weighted coefficient of determination. 
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In what follows, we shall adopt the simplifying notational convention ˆˆ ( )
ML ML

= MS q

Under the conditions of Equation 12, with maximum likelihood estimation, one 

immediately obtains  

 ( ) ( )
2

11
2

ˆ ˆ ˆ, Tr
ML ML MMLL

F -é ù= = -ê úë û¢S e W SeS S S  (13) 

 ( )211
2

ˆTr
ML
-¢ =s Ws SS  (14) 

whence  

 
( )
( )

2
1

2
1

ˆTr

ˆr
1

T

ML

ML

ML

g
-

-

-
= -

S I

S

S

S
 (15) 

which is equivalent to the Jöreskog and Sörbom (1984) GFI index included in the 

output of many structural equation modeling programs. Moreover, if the model is ICSF, 

then, under maximum Wishart likelihood estimation, there is the simplifying result 

(Browne, 1974, Proposition 8) 

 ( )1ˆTr
ML

p- =SS  (16) 

Substituting in Equation 13, one finds 

 ( )
2

11
2

ˆ ˆ, Tr
ML ML

F p-æ öé ù ÷ç= - ÷ç ê ú ÷ç ë ûè ø
S SS S  (17) 

and so 

 

( )212 ˆTr
ML

ML

p p
g

-
= =

¢s Ws SS
 (18) 

Tanaka and Huba (1985, 1989) based their derivation of g  on sample quantities. 

However, in principle one is interested in a sample index primarily as a vehicle for 

estimating the corresponding population index. Define 
ML

S  as the reproduced 

covariance matrix resulting from fitting the model to the population covariance matrix

S  with maximum likelihood estimation. The corresponding population quantities are 

obtained by substituting S  for S, and 
ML

S  for ˆ
ML

S  in Equations 17 and 18. One 

obtains 
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( )1
1 2

Tr
ML

p

-
G =

SS
 (19) 

 can be thought of as a weighted population coefficient of determination for the 

multivariate (ICSF) model. (It may also be thought of as the population equivalent of 

the Jöreskog-Sörbom GFI index.) 

An accurate point estimate for 
1

G  will provide useful information about the extent to 

which a model reproduces the information in S . A confidence interval, however, 

provides even more useful information, because it conveys not only the size of 
1

G , but 

also the precision of our estimate. 

Let *F be the Population Noncentrality Index 1( )
ML

F -SS . From Equations 17 and 18, it 

is easy to see that  

 
*1 2

p

F p
G =

+
 (20) 

Equation 20 demonstrates that, under maximum likelihood estimation with ICSF 

models, 
1

G  can be expressed solely as a function of the Population Noncentrality Index 

and p, the number of manifest variables. Any consistent estimate of *F  will yield a 

consistent estimate of 
1

G  when substituted in Equation 20. Equation Similarly, 

substitution of the endpoints of the confidence interval for *F in Equation 20 will 

generate a confidence interval for 
1

G .  

Equation 20 and the accompanying derivation were first presented in Steiger (1989). 

Maiti and Mukherjee (1990), working completely independently of Steiger (1989), 

produced the identical result (their Equation 17). Steiger (1989) had suggested that the 

sample GFI was a biased estimator of the population value. Maiti and Mukerjee 

quantified the bias with the following (their Equation 16) approximate expression (for a 

chi square statistic with n  degrees of freedom). 

 ( )
* 2

2
ML

p
E

p F
N

g
n

»
+ +

 (21) 

This can be rewritten in perhaps a more revealing form as 

1
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 ( ) 1

1
/ )(2ML

p
E

p N
g

n

æ ö÷ç ÷ç= ÷ççè ø
G

G ÷÷+
 22 

Adjusted Population Gamma Index 

1
G , like *F , fails to compensate for the effect of model complexity. Consider a sequence 

of nested models, where the models with more degrees of freedom are special cases of 

those with fewer degrees of freedom. (See Steiger, Shapiro, and Browne, 1985, for a 

discussion of the statistical properties of chi square tests with nested models.) For a 

nested sequence of models, the more complex models (i.e., those with more free 

parameters and fewer degrees of freedom) will always have 
1

G coefficients as low or 

lower than those which are less complex. 

Goodness of fit, as measured by 
1

G , improves more or less inevitably as more 

parameters are added. The adjusted population gamma index 
2

G  attempts to 

compensate for this tendency.  

Just as 
1

G  is computed by subtracting a ratio of sums of squares from 1, 
2

G  is obtained 

by subtracting a corresponding ratio of mean squares from 1. Let * ( 1) / 2p p p= + . Let 

ŝ  be a * 1p ´  vector of non-duplicated elements of the population reproduced 

covariance matrix ( )M q , as in Equation 11 for a model with n  degrees of freedom, and 

e  a corresponding vector of residuals. Then  

 ( )2 1

*

*

/

ˆ /
1 1 / (1 )

ˆ p
p

n
n= - -

¢
-

¢
G = G

e We

Wss
 (23) 

Consistent estimates and confidence intervals for 
1

G  may thus be converted into 

corresponding quantities for 
2

G by applying Equation 23. 

McDonald’s Index of Noncentrality 

McDonald proposed this index of noncentrality in a 1989 article in the Journal of 

Classification. The index represents one approach to transforming the population 

noncentrality index *F  into the range from 0 to 1. The index does not compensate for 

model parsimony, and the rationale for the exponential transformation it uses is 

primarily pragmatic. 

The index may be expressed as 
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 *exp( / 2)F-  (24) 

Good fit is indicated by values above .95. 

Extensions to Multiple Group Analysis 

When more than one group is analyzed, the chi square statistic is a weighted sum of the 

discrepancy functions obtained from the individual groups . If the sample sizes are 

equal, the noncentrality-based indices discussed above generalize in a way that is 

completely straightforward. When sample sizes are unequal, this is not so, although 

SEPATH will still compute modified versions of the indices as described below, and 

these will still be of considerable value in assessing model fit. 

With K independent samples, the overall chi square statistic is of the form  

 
1

K

k k
k

F c F
=

= å  (25) 

where  

 
1

k
k

total

N

N
c

K

-
=

-
 (26) 

and 

 
1

K

total k
k

NN
=

= å  (27) 

The chi square statistic is then computed as  

 2 ( )
total

N K Fc = -  (28) 

This statistic has, under the assumptions of Steiger, Shapiro, and Browne (1985) a large 

sample distribution that is approximated by a noncentral chi square distribution, with 

n degrees of freedom, and a noncentrality parameter equal to 

 *

1

( 1)
K

k k
k

N Fl
=

= -å  (29) 

where *

k
F is the population discrepancy function for the kth group.  
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One can estimate this noncentrality parameter and set confidence intervals on it. 

However, inference to relevant population quantitities is less straightforward. Consider, 

for example, the point estimate analogous to the single sample case. The statistic  

 
2

total
N K

c n-
-

 (30) 

has an expected value of approximately 

 * *

1 1

1K K
k

k k k
k ktotato ltal

N
F c F

N KKN

l

= =

-
= =

-- å å  (31) 

where  is as defined above. This demonstrates that we can estimate a weighted 

average of the discrepancies for each sample, where the weights sum to 1, and are a 

function of sample size. If the sample sizes are equal, the weighted average becomes the 

simple arithmetic average, or mean, and so we can also estimate the unweighted sum of 

discrepancies. 

How one should this information to produce multiple group versions of the RMSEA, and 

population gamma indices is open to some question when sample sizes are not equal. 

Perhaps the most natural candidates for the population RMSEA would be an 

“unweighted” index,  

 
*

1
unweight

K
k

k
ed

F
RMSEA

n=

= å  (32) 

and a “weighted” index 

 

*

1

/wei

k
k

ghtd

K

k
c F

RMSE
k

A
n
==
å

 (33) 

When sample sizes are equal, both are the same.  

Unfortunately, since we can only estimate the weighted average of population 

discrepancies, we must choose the second option when sample sizes are unequal. The 

SEPATH module in Statistica currently reports point and interval estimates for the 

weighted coefficient, which represents the square root of the ratio of a weighted average 

of discrepancies to an average number of degrees of freedom.  

ck
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In calculating analogs of the population gamma indices, SEPATH substitutes K times 

the estimate of the weighted average of discrepancies in place of *F  in Equations 20 and 

23. 

Other Indices of Fit 

Jöreskog­Sörbom GFI 

This sample based index of fit is computed as 
ML

g  in Equation 18. 

Jöreskog­Sörbom Adjusted GFI 

This sample based index of fit is computed as  

 * )(11 ( / )
ML

p n g--  (34) 

where  is the GFI index. 

Rescaled Akaike Information Criterion 

In a number of situations the user must decide among a number of competing nested 

models of differing dimensionality. (The most typical example is the choice of the 

number of factors in common factor analysis.) Akaike (1973, 1983) proposed a criterion 

for selecting the dimension of a model. Steiger and Lind (1980) presented an extensive 

Monte Carlo study of the performance of the Akaike criterion. Here the criterion is 

rescaled (without affecting the decisions it indicates) so that it remained more stable 

across differing sample sizes. The rescaled Akaike criterion is as follows. 

Consider a sequence of models 
k

M  fit to a data set. Let 
,ML k

F  be the maximum 

likelihood discrepancy function and k
f  be the number of free parameters for the model 

Mk. Let N be the sample size. Then select the model Mk for which  

 
,

2

1
k

k ML k

f
A F

N
= +

-
 (35) 

Schwarz’s Bayesian Criterion 

This criterion (Schwarz, 1978) is similar in use to Akaike’s index, selecting, in a 

sequence of nested models, the model for which 

ML



-14- 

 

 
,

ln( )

1
k

k ML k

f N
S F

N
= +

-
 (36) 

Browne­Cudeck Single Sample Cross­Validation Index 

Browne and Cudeck (1989) proposed a single sample cross-validation index as a follow-

up to their earlier (Cudeck & Browne, 1983) paper on cross-validation. Cudeck and 

Browne had proposed a cross-validation index which, for model 
k

M  in a set of 

competing models is of the form ( ), ( )
ML k

F nS M q . In this case, F is the maximum 

likelihood discrepancy function, nS  is the covariance matrix calculated on a cross-

validation sample, and ( )
k
M q  the reproduced covariance matrix obtained by fitting 

model 
k

M  to the original calibration sample. In general, better models will have smaller 

cross-validation indices. 

The drawback of the original procedure is that it requires two samples, i.e., the 

calibration sample for fitting the models, and the cross-validation sample. The new 

measure estimates the original cross-validation index from a single sample.  

The measure is  

 
2

( , ( ))
2k ML

k
k

f
C F

N p
= +

- -
S M q  (37) 

where 
k
f  is the number of free parameters in model k, p is the number of manifest 

variables, and N is the sample size. 

Independence Model chi square and df 

These are the chi square goodness-of-fit statistic, and associated degrees of freedom, for 

the hypothesis that the population covariances are all zero. Under the assumption of 

multivariate normality, this hypothesis can only be true if the variables are all 

independent. The “Independence Model” is used as the “Null Model” in several 

comparative fit indices. 
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Bentler­Bonett Normed Fit Index 

One of the most historically important and original fit indices, the Bentler-Bonett index 

measures the relative decrease in the discrepancy function caused by switching from a 

“Null Model” or baseline model, to a more complex model. It is defined as: 0

0

k
k

F F
B

F

-
=  

 

0
F = the discrepancy function for the “Null Model” 

k
F = the discrepancy function for the k’th model 

This index approaches 1 in value as fit becomes perfect. However, it does not 

compensate for model parsimony. 

Bentler­Bonett Non­Normed Fit Index 

This comparative index takes into account model parsimony. It may be written as 

 

2 2

0

0 0

2

0

00

0

0 1
1

1

kk

k k
k

F F

BNN
F

N

c c
n n n n

c
nn

- -

= =
--

-

 (38) 

2

0
c = chi square for the “Null Model” 

2

k
c = chi square for the k’th model 

0
n =  degrees of freedom for the “Null Model” 

k
n = degrees of freedom for the k’th model 

Bentler Comparative Fit Index 

This comparative index estimates the relative decrease in population noncentrality 

obtained by changing from the “Null Model” to the k’th model. The index may be 

computed as: 

 
0

1
ˆ

ˆ
k
t
t

-  (39) 

k̂
t = estimated non-centrality parameter for the k’th model 
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0̂
t = estimated non-centrality parameter for the “Null Model” 

James­Mulaik­Brett Parsimonious Fit Index 

This index was one of the earliest (along with the Steiger-Lind index) to compensate for 

model parsimony. Basically, it operates by rescaling the Bentler-Bonnet Normed fit 

index to compensate for model parsimony. The formula for the index is: 

 
0

k
kk

B
n

p
n

=  (40) 

0
n = degrees of freedom for the “Null Model” 

k
n = degrees of freedom for the k’th model 

k
B = Bentler-Bonnet normed fit index 

Bollen’s Rho 

This comparative fit index computes the relative reduction in the discrepancy function 

per degree of freedom when moving from the “Null Model” to the k’th model. It is 

computed as: 

 

0

0

0

0

k

k
k

F F

F

n n
r

n

-
=  (41) 

0
n = degrees of freedom for the “Null Model” 

k
n = degrees of freedom for the kth model 

0
F =  the discrepancy function for the “Null Model” 

k
F = the discrepancy function for the kth model 

Comparing the two indices, we see that, for even moderate N, there is bound to be 

virtually no difference between Bollen’s Rho and the Bentler-Bonnet Non-normed fit 

index. 
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Bollen’s Delta 

This index is also similar in form to the Bentler-Bonnet index, but rewards simpler 

models (those with higher degrees of freedom). It is computed as:  

 0

0

k
k

k

F F

F
N

n
D

-
=

-
 (42) 

k
n = degrees of freedom for the kth model 

0
F =  the discrepancy function for the “Null Model” 

k
F = the discrepancy function for the kth model 

N = sample size 
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